

Jacek Stańdo

Jak wykorzystać technologię w nauce planimetrii i stereometrii?

✓ Odkrywanie twierdzeń i własności

 Obszary wykorzystania technologii informacyjno-komunikacyjnych w geometrii

Analiza merytoryczna Elżbieta Miterka

Recenzja Jolanta Lazar

Redakcja językowa i korekta Agata Jabłonowska-Turkiewicz

Projekt graficzny, projekt okładki Wojciech Romerowicz, ORE

Skład i redakcja techniczna Grzegorz Dębiński

Projekt motywu graficznego "Szkoły ćwiczeń" Aneta Witecka

ISBN 978-83-65967-00-8 (Zestawy materiałów dla nauczycieli szkół ćwiczeń – matematyka)
ISBN 978-83-65967-28-2 (Zestaw 7. Wykorzystanie technologii informacyjnokomunikacyjnych w edukacji matematycznej w klasach IV–VIII szkoły podstawowej i szkole ponadpodstawowej)
ISBN 978-83-65967-30-5 (Zeszyt 2. Jak wykorzystać technologię w nauce planimetrii i stereometrii?)

Warszawa 2017 Ośrodek Rozwoju Edukacji Aleje Ujazdowskie 28 00-478 Warszawa www.ore.edu.pl

Publikacja jest rozpowszechniana na zasadach wolnej licencji Creative Commons – Użycie niekomercyjne 3.0 Polska (CC-BY-NC).

Unia Europejska Europejski Fundusz Społeczny

Spis treści

Wstęp	3
Narzędzia GeoGebry	3
Kalkulatory graficzne	4
TI-Nspire	4
Obszary wykorzystania technologii informacyjno-komunikacyjnych w geometrii	5
Stawianie hipotez	5
Wprowadzenie definicji, nowego pojęcia	9
Konstrukcje geometryczne	13
Dowód twierdzenia	15
Odkrywanie twierdzeń i własności	18
Wizualizacja nowych pojęć	28
Rozwiązywanie zadań	29
Matura międzynarodowa	32
Dowiedz się więcej	33
Bibliografia	34

Wstęp

Najlepszym programem matematycznym do nauki geometrii jest GeoGebra. To dynamiczne oprogramowanie matematyczne, które łączy geometrię, algebrę i analizę matematyczną. Jest ono ciągle rozwijane przez grupę programistów.

GeoGebra to darmowy program dostępny na stronie <u>geogebra.org</u>. Do używania go niezbędne jest jedynie zainstalowanie środowiska Java. Obecnie oprogramowanie dostosowane jest do smartfonów, iPhonów i tabletów.

Twórcą programu GeoGebra jest Markus Hohenwarter. Na świecie znajduje się kilkadziesiąt instytutów GeoGebry. W Polsce są dwa: w Warszawie i Łodzi. Instytuty prowadzą szkolenia dla nauczycieli, publikują książki i podręczniki. Na Politechnice Łódzkiej powstało kilkanaście podręczników z wykorzystaniem GeoGebry (źródło: <u>www.epodreczniki.pl</u>).

Narzędzia GeoGebry

GeoGebra ma kilkanaście narzędzi, dzięki którym można tworzyć konstrukcje geometryczne. Oto kilka podstawowych.

Grupa narzędzi konstrukcyjnych

Umożliwiają konstrukcję prostej prostopadłej, równoległej, dwusiecznej kąta, środek odcinka, styczne do okręgu.

Grupa narzędzi pomiarowych

Dzięki nim można dokonać pomiaru pola powierzchni, długość odcinka, miary kąta.

Grupa narzędzi do konstrukcji prostych

Umożliwiają rysowanie odcinka, przesunięcie punktu o wektor, narysowanie wektora między dwoma punktami.

Grupa narzędzi do konstrukcji okręgu, koła

Służą do rysowania okręgu, łuku, wycinka koła, rysowanie kąta o danej mierze.

Kalkulatory graficzne

Do nauki geometrii możemy także wykorzystać kalkulatory graficzne.

TI-Nspire

Kalkulator TI-Nspire – wprowadzanie i przeglądanie wyrażeń, równań i wzorów.

Wykresy i geometria – rysowanie wykresów funkcji i graficzne rozwiązywanie układów równań. Możliwość modyfikowania zmiennych, by zobaczyć, jak zmieniają się również w czasie rzeczywistym wartości w dynamicznie połączonych tabelach i równaniach. Kalkulator umożliwia również tworzenie wykresów w połączeniu z geometrią w obrębie jednego ekranu. Ta funkcja obejmuje także możliwość tworzenia wykresów biegunowych.

Listy i arkusze kalkulacyjne – użytkownik może prześledzić zebrane dane na wykresach i obserwować prawidłowości liczbowe, korzystając z możliwości podobnych do komputerowych arkuszy kalkulacyjnych, np. nazywania kolumn, wstawiania formuł w komórki.

Dane i statystyka – możliwość wizualizacji zebranych danych statystycznych, korzystając z różnych metod prezentacji graficznej. Użytkownik może w sposób dynamiczny zmieniać i analizować dane, obserwując, jak zmiany w danych wpływają na analizę statystyczną.

Możliwość tworzenia wykresów, m.in. histogramów, i na ich podstawie prowadzenie różnego rodzaju wnioskowań statystycznych na podstawie rzeczywistych zestawów danych.

Notatki – możliwość wprowadzania własnych notatek, np. treści zadań wraz z różnymi drogami, prowadzącymi do ich rozwiązań.

Vernier Dataquest – możliwość utworzenia hipotezy w postaci graficznej i dopasowania do niej wyników z przeprowadzonych doświadczeń. Aplikacja używana w połączeniu z urządzeniem TI-Nspire Lab Cradle.

Obszary wykorzystania technologii informacyjnokomunikacyjnych w geometrii

Stawianie hipotez

Hipoteza to propozycja twierdzenia, własności, na które w danym momencie uczeń nie zna odpowiedzi o jej prawdziwości. Stawianie i sprawdzanie hipotez to jeden z obszarów procesu twórczego myślenia.

Eksperyment polega na manipulacji zmiennymi i obserwacji wpływu tych zmiennych na wynik.

Eksperyment charakteryzuje:

- manipulacja zmiennymi;
- obserwacja zjawiska;
- formułowanie wniosku;
- losowy wybór danych;
- badanie grupy eksperymentalnej i kontrolnej.

Eksperyment, w którym nie występuje losowanie danych, nazywamy quasi-eksperymentem.

Metodologia eksperymentu badawczego

Istota stawiania problemu badawczego, jego przebiegu, rozwiązania jest ważnym elementem procesu nauczania. Poniżej przedstawiony został schemat postępowania w przypadku eksperymentu badawczego.

Przedstawmy kilka prostych przykładów, które warto wdrożyć z uczniami, aby wiedzieli, na czym polega eksperyment badawczy.

Eksperyment "Praca klasowa"

Nauczyciel oddał prace klasowe. Na pracy Wojtka jest napisane, że popełnił jeden błąd. Jeśli go znajdzie, dostanie ocenę celującą.

Problem badawczy:

• W którym zadaniu został popełniony błąd?

Zapoznanie się ze stanem wiedzy dotyczącym problemu badawczego:

• Weryfikacja wiedzy z zakresu pracy klasowej.

Wybór narzędzi do testowania hipotezy:

• Sprawdzenie zadania np. z użyciem programu Wolfram Alpha.

Postawienie hipotezy badawczej:

• Szukam błędu w zadaniu, które było najtrudniejsze.

Testowanie hipotezy:

• Zadanie wykonane prawidłowo. Hipoteza fałszywa.

Modyfikacja hipotezy:

• Szukam błędu w zadaniu, które jest trudne, ale nie najtrudniejsze.

Testowanie hipotezy:

• Zadanie wykonane z błędem. Hipoteza prawdziwa.

Sformułowanie wyniku:

• Poprawienie błędu.

Sformułowanie wniosku końcowego:

• Otrzymanie oceny celującej.

Eksperyment "Symetralne"

Problem badawczy:

• W ilu punktach przecinają się symetralne w trójkącie?

Zapoznanie się ze stanem wiedzy dotyczącym problemu badawczego:

• Uczniowie znają definicję trójkąta, wiedzą co to jest symetralna odcinka. (Zakładamy, że uczniowie nie znają twierdzenia o symetralnych w trójkącie – to mają odkryć).

Wybór narzędzi do testowania hipotezy:

• Program GeoGebra.

Konstrukcja:

- Wprowadzamy trzy punkty: A, B, C jako wierzchołki trójkąta.
- Konstruujemy środki boków trójkąta.
- Konstruujemy proste prostopadłe do odcinków i przechodzące przez ich środki.

Postawienie hipotezy badawczej:

• Symetralne w trójkącie przecinają się w jednym punkcie.

Testowanie hipotezy:

• Przesuwając dowolny wierzchołek trójkąta, obserwujemy przecięcie się symetralnych trókąta.

Sformułowanie wyniku:

• Symetralne w trójkącie przecinają się w jednym punkcie.

Sformułowanie wniosku końcowego:

Propozycja 1

Nauczyciel potwierdza prawdziwość twierdzenia.

Propozycja 2

Dowód tego twierdzenia może być przygotowany przez jednego z uczniów i zaprezentowany całej klasie na kolejnej lekcji.

Wprowadzenie definicji, nowego pojęcia

Jednym z ważniejszych elementów procesu nauczania matematyki jest wprowadzanie nowych pojęć, definicji. W definicji powinno unikać się nieistotnych cech określających dane pojęcie. Do wprowadzenia nowych pojęć możemy wykorzystać technologie informacyjnokomunikacyjne.

W nauczaniu możemy posłużyć się dwoma modelami wprowadzania definicji:

Model 1

- Wprowadzenie definicji.
- Interpretacja definicji przez przykłady.

Model 2

- Obserwacja eksperymentu, zjawiska.
- Zdefiniowanie pojęcia.

Przykład

Wprowadzenie definicji liczby Pi.

Faza 1 – zastosowanie modelu 1

Uczniowie przynoszą do szkoły przedmiot w kształcie koła, sznurek, linijkę.

Ćwiczenie

Używając sznurka, mierzymy obwody przyniesionych kół i mierzymy długość średnicy.

Wyniki zapisujemy w tabeli.

Uczeń	Ob. = Obwód koła	D = Średnica	Ob. / d
1			
2			

Używając kalkulatora, obliczamy stosunek obwodu do długości średnicy.

Oczekiwany efekt:

Uczniowie formułują wnioski:

Stosunki obwodów do długości średnicy są zawsze "prawie" równe.

Stosunek obwodu do długości średnicy jest równy około 3.

Faza 2 - zastosowanie modelu 2

Eksperyment "Liczba Pi"

Problem badawczy:

• Jak zmienia się stosunek obwodu okręgu do długości średnicy?

Zapoznanie się ze stanem wiedzy dotyczącym problemu badawczego:

• Uczniowie znają definicję koła, okręgu, średnicy i obwodu. (Zakładamy, że uczniowie nie znają definicji liczby Pi).

Wybór narzędzi do testowania hipotezy:

• Program GeoGebra

Konstrukcja:

- Wprowadzamy okręg o dowolnym środku i promieniu.
- Konstruujemy średnicę CD.
- Wyznaczmy długość średnicy i obwód okręgu.

Postawienie hipotezy badawczej:

- Stosunki obwodów do długości średnicy są zawsze równe.
- Stosunek obwodu do długości średnicy jest równy około 3,14.

Testowanie hipotezy:

• Zmieniając położenie punktu B, obserwujemy zmianę stosunku długości obwodu do średnicy dla dowolnego okręgu.

Sformułowanie wyniku:

• Stosunek długości obwodu do średnicy dla dowolnego okręgu jest równy około 3,14.

Sformułowanie wniosku końcowego:

• Przygotowanie przez ucznia plakatu na temat "Historii przybliżenia liczby Pi".

Babilończycy (ok. 2000 r. p.n.e.): $\pi \approx 3$

Egipcjanie (ok. 2000 r. p.n.e.): $\pi \approx \left(\frac{16}{9}\right)^2 \approx 3,160493...$ Archimedes (III w. p.n.e.): $\pi \approx \frac{22}{7} \approx 3,14$

Chiński matematyk Chang Hing (I w. n. e.): $\pi \approx \frac{142}{45} \approx 3,1555...$ Klaudiusz Ptolomeusz (II w. n.e.): $\pi \approx 3 + \frac{8}{60} + \frac{3}{360} \approx 3,1416$ hinduski matematyk Ariabhata (V w. n.e.): $\pi \approx \frac{62832}{20000} = 3,1416$ hinduski matematyk Brahmagupta (VII w. n.e.): $\pi \approx 10^{(\frac{1}{2})} \approx 3,162...$

hinduski matematyk Bhasakara (VII w. n.e.): $\pi \approx \frac{754}{240} \approx 3,1416666...$ włoski matematyk Leonardo Fibonacci (XIII w.): $\pi \approx \frac{864}{275} \approx 3,1415929$ holenderski matematyk Piotr Metius (XVI w.): $\pi \approx \frac{355}{113} \approx 3,1415$ francuski matematyk Francois Viete (XVI w.): $\frac{2}{\pi} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2}+\sqrt{2}}}{2} \cdot ...$ angielski matematyk John Wallis (XVII w.): $\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdot ...$ niemiecki matematyk Gottfried Wilhelm Leibniz (XVII w.): $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - ...$ szwajcarski matematyk Leonhard Euler (XVIII w.): $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + ...$

Ciekawostki

W kosmos wysyłana jest informacja o liczbie Pi. Przypuszcza się, że ta liczba jest tak ważna, że jeśli istnieje inteligencja we wszechświecie, to zostanie ona rozpoznana.

W Biblii, w II Księdze Królewskiej, Rozdział 7, można przeczytać o pewnym przybliżeniu liczby Pi: "Następnie sporządził odlew morza o średnicy dziesięciu łokci, okrągłego, o wysokości pięciu łokci i o obwodzie trzydziestu łokci".

Warto także wspomnieć, że Wisława Szymborska napisała wiersz pt.: "Liczba Pi".

Nauczyciel matematyki może poprosić nauczyciela języka polskiego, aby omówił ten wiersz na zajęciach z uczniami.

Propozycja pomiaru efektów kształcenia

Zadanie 1: Uczeń przywołuje własność o stosunek obwodu okręgu do długości średnicy.

Zadanie 2: Uczeń wyznacza obwód okręgu na podstawie definicji liczby Pi.

Zadanie 3: Uczeń wyznacza średnicę okręgu na podstawie definicji liczby Pi.

Zadanie 4: Uczeń analizuje średnicę okręgu na podstawie definicji liczby Pi.

Zadanie 5: Uczeń uzasadnia stosunek obwodu okręgu do długości średnicy.

Zadanie 1

Długość średnicy zwiększyła się dwukrotnie. Ile razy zwiększyła się średnica okręgu?

Zadanie 2

Oblicz obwód okręgu, jeśli średnica jest równa 4.

Zadanie 3

Obwód okręgu jest równy 10. Wyznacz średnicę okręgu.

Zadanie 4

Długość średnicy okręgu K jest p razy większa od długości okręgu L. Ile razy obwód okręgu K jest większy od obwodu okręgu L.

Zadanie 5

Długość średnicy zwiększyła się o 3. Czy obwód okręgu zwiększy się o 3? Odpowiedź uzasadnij.

Konstrukcje geometryczne

Możemy z uczniami oszacować liczbę Pi, powielając pomysł Archimedesa. Uzyskał on ten wynik, wyznaczając długości boków dwóch 96-kątów foremnych – opisanego na okręgu i wpisanego w ten sam okrąg. Następnie obliczył średnią arytmetyczną obwodów tych wielokątów, otrzymując przybliżenie długości okręgu. Obliczenia były bardzo żmudne i czasochłonne. Mimo wielkich wysiłków Archimedesowi nie udało się dokonać analogicznych obliczeń dla 192-kątów, co pozwoliłoby mu wyznaczyć wartość ludolfiny z jeszcze większą dokładnością (na podstawie: Liczba Pi, Wikipedia).

Eksperyment "Wyznaczenie liczba Pi – metoda Archimedesa"

Problem badawczy:

• Ile wynosi przybliżenie liczby Pi?

Zapoznanie się ze stanem wiedzy dotyczącym problemu badawczego:

 Uczniowie znają definicję koła, okręgu, średnicy i obwodu, wielokąta foremnego, wielokąta opisanego i wpisanego w okrąg. (Zakładamy, że uczniowie nie znają definicji liczby Pi).

Wybór narzędzi do testowania hipotezy:

• Program GeoGebra.

Konstrukcja

- Wprowadzamy okręg o dowolnym środku i promieniu.
- Konstruujemy wielokąt foremny wpisany w okrąg.
- Konstruujemy wielokąt foremny wpisany w okrąg.

Postawienie hipotezy badawczej:

• Stosunek obwodu do długości średnicy jest równy około 3,14.

Testowanie hipotezy:

• Zmieniamy wielokąt opisany i wpisany na okręgu. Zaczynamy od kwadratu, następnie analizujemy pięciokąt i sześciokąt foremny.

Sformułowanie wyniku:

• Stosunek długości obwodu do średnicy dla dowolnego okręgu jest równy około 3,14.

Sformułowanie wniosku końcowego:

• Przybliżenie liczby Pi wynosi...

Dowód twierdzenia

W procesie nauczania pedagodzy bardzo rzadko na lekcji decydują się na wprowadzenie dowodów matematycznych. Jakie są tego przyczyny?

- Zbyt mała liczba godzin przeznaczonych na nauczanie matematyki.
- Trudności uczniów w zrozumieniu dowodu.

Należy jednak zauważyć, że od 2010 r. na maturze pojawiają się zadania na dowodzenie. Analizując wyniki matur, zauważamy, że najtrudniejsze są zadania na dowodzenie z zakresu geometrii. Warto, aby nauczyciele przygotowali dowody twierdzeń, wykorzystując technologie informacyjno-komunikacyjne. Dzięki temu oszczędzamy czas, a uczniowie zapoznają się z dowodami twierdzeń.

Model dowodu twierdzenia

Warto uczniom zaprezentować krok po kroku przeprowadzenie dowodu twierdzenia z użyciem np. GeoGebry. W trakcie przejść między krokami pojawiają się pytania kontrolne. Prawidłowa odpowiedź pozwala przejść do kolejnego kroku. Schemat przedstawiony jest na rysunku.

Przykład dowodu twierdzenia Pitagorasa został zaprezentowany w e-podręczniku.

Przechodząc z kroku 5 do 6, trafiamy na pytanie kontrolne.

Pole figury zaznaczonej kolorem zielonym jest równe:

- a) a^2
- **b)** b^2
- c) $a^2 + b^2$
- **d)** ab

Tylko prawidłowa odpowiedź na pytanie daje możliwość przejścia do kolejnego kroku dowodu.

Kolejny przykład dowodu zaprezentowanego w e-podręczniku.

Twierdzenie:

Jeśli punkt leży na dwusiecznej kąta, to jego odległość od ramion jest taka sama.

Dwusieczna kąta

Przechodząc z kroku 5 do 6, napotykamy na pytanie kontrolne. Zadaniem ucznia jest wskazanie kąta równego wskazanemu kątowi.

Odkrywanie twierdzeń i własności

Faza 1

Uczniowie przynoszą na lekcję: cyrkiel, kątomierz.

Ćwiczenie

Używając przyrządów, mierzymy kąty wpisane i kąty środkowe.

Wyniki zapisujemy w tabeli.

Uczeń	Miara kąta wpisanego	Miara kąta środkowego	Stosunek miar kątów
1			
2			

Używając kalkulatora, obliczamy stosunek miary kąta wpisanego do miary kąta środkowego.

Oczekiwany efekt:

Uczniowie formułują wnioski:

• Stosunki miary kąta wpisanego do miary kąta środkowych są zawsze "prawie" równe jedna druga.

Faza 2

Eksperyment "Związek między kątem wpisanym i środkowym opartym na tym samym łuku"

Problem badawczy:

 Jaki jest związek między kątem wpisanym a kątem środkowym opartym na tym samym łuku? Zapoznanie się ze stanem wiedzy dotyczącym problemu badawczego:

• Uczniowie znają definicję kąta wpisanego i środkowego.

Wybór narzędzi do testowania hipotezy:

• Program GeoGebra.

Konstrukcja:

- Wprowadzamy okrąg o dowolnym środku i promieniu.
- Konstruujemy kąt środkowy i kąt wpisany oparty na tym samym łuku.
- Wprowadzamy miarę kąta środkowego i kąta wpisanego.

Postawienie hipotezy badawczej:

 Miara kąta wpisanego jest dwa razy mniejsza od kąta środkowego opartego na tym samym łuku.

Testowanie hipotezy:

• Zmieniamy położenie punktów i obserwujemy wartości mierzonych kątów.

Sformułowanie wyniku:

 Miara kąta wpisanego jest dwa razy mniejsza od kąta środkowego opartego na tym samym łuku.

Sformułowanie wniosku końcowego:

Propozycja 1

Nauczyciel potwierdza prawdziwość twierdzenia.

Propozycja 2

Dowód tego twierdzenia może być przygotowany przez jednego z uczniów i zaprezentowany całej klasie na kolejnej lekcji.

Propozycja pomiaru efektów kształcenia

Zadanie 1: Uczeń przywołuje twierdzenie o kącie środkowym i wpisanym.

Zadanie 2: Uczeń stosuje twierdzenie o kącie środkowym i wpisanym.

Zadanie 3: Uczeń stosuje twierdzenie o kącie środkowym i wpisanym w przypadku, gdy kąt środkowy jest półpełny.

Zadanie 4: Uczeń analizuje twierdzenie o kącie środkowym i wpisanym w przypadku, gdy kąt środkowy jest półpełny.

Test

Zadanie 1 Wybierz zdanie prawdziwe:

- b) $d = \alpha = \beta > \gamma$
- c) $d = \alpha = \beta = \gamma$
- d) $2\alpha = 2\beta = 2\gamma = d$

N

Zadanie 2 Miara kąta jest równa:

Zadanie 3

Miara kąta ABC jest równa:

Zadanie 4

Wyznacz miary kątów x, y.

Szczególny przypadek twierdzenia o kącie wpisanym i środkowym

Ćwiczenie

Załóżmy, że kąt środkowy jest półpełny. Na podstawie twierdzenia o kącie wpisanym i środkowym omów własności trójkąta ABC.

Spodziewany efekt:

- Jeśli trójkąt jest prostokątny, to środek okręgu opisanego na tym trójkącie leży w połowie przeciwprostokątnej.
- Jeśli trójkąt jest prostokątny, to promień okręgu opisanego na tym trójkącie jest równy połowie długości średnicy.

Warto z uczniami omówić też twierdzenia (hipotezy) odwrotne. Poniżej przedstawiamy przykładowe ćwiczenie.

Ćwiczenie

Dane są twierdzenia:

- Jeśli trójkąt jest prostokątny, to środek okręgu opisanego na tym trójkącie leży w połowie przeciwprostokątnej.
- Jeśli trójkąt jest prostokątny, to promień okręgu opisanego na tym trójkącie jest równy połowie długości średnicy.

Uczeń skonstruuje hipotezę odwrotną.

Spodziewany wynik:

- Jeśli środek okręgu opisanego na tym trójkącie leży w połowie boku, to trójkąt jest prostokątny.
- Jeśli promień okręgu opisanego na tym trójkącie jest równy połowie długości boku, to trójkąt jest prostokątny.

Eksperyment "Środek okręgu opisanego w połowie boku trójkąta"

Problem badawczy:

 Czy jeśli środek okręgu opisanego na trójkącie leży w połowie boku, to trójkąt jest prostokątny?

Zapoznanie się ze stanem wiedzy dotyczącym problemu badawczego:

• Uczniowie znają definicję trójkąta i okręgu opisanego na trójkącie. (Zakładamy, że uczniowie znają twierdzenia o okręgu opisanym na trójkącie).

Wybór narzędzi do testowania hipotezy:

• Program GeoGebra.

Konstrukcja:

- Konstruujemy trójkąt.
- Symetralne boków.
- Punkt przecięcia się symetralnych środek okręgu opisanego na trójkącie.

Postawienie hipotezy badawczej:

• Jeśli środek okręgu opisanego na trójkącie leży w połowie boku, to trójkąt jest prostokątny?

Testowanie hipotezy:

• Przesuwamy dowolny wierzchołek trójkąta tak, aby środek okręgu opisanego na trójkącie był w połowie dowolnego boku.

Sformułowanie wyniku:

 Jeśli środek okręgu opisanego na trójkącie leży w połowie boku, to trójkąt jest prostokątny.

Sformułowanie wniosku końcowego:

Propozycja 1

Nauczyciel potwierdza prawdziwość twierdzenia.

Propozycja 2

Dowód tego twierdzenia może być przygotowany przez jednego z uczniów i zaprezentowany całej klasie na kolejnej lekcji.

Eksperyment "Promień okręgu opisanego w środku boku trójkąta"

Problem badawczy:

 Czy jeśli promień okręgu opisanego na trójkącie leży w środku boku, to trójkąt jest prostokątny?

Zapoznanie się ze stanem wiedzy dotyczącym problemu badawczego:

 Uczniowie znają definicję trójkąta, okręgu opisanego na trójkącie. (Zakładamy, że uczniowie znają twierdzenia o okręgu opisanym na trójkącie).

Wybór narzędzi do testowania hipotezy:

• Program GeoGebra.

Konstrukcja:

- Konstruujemy trójkąt.
- Konstruujemy okrąg o środku w połowie boku trójkąta i promieniu równym połowie długości tego boku.

Postawienie hipotezy badawczej:

• Jeśli promień okręgu opisanego na trójkącie leży w połowie boku, to trójkąt jest prostokątny?

Testowanie hipotezy:

• Przesuwamy wierzchołek trójkąta tak, aby okręgu był opisany na trójkącie.

Sformułowanie wyniku:

• Jeśli promień okręgu opisanego na trójkącie leży w połowie boku, to trójkąt jest prostokątny.

Sformułowanie wniosku końcowego:

Propozycja 1

Nauczyciel potwierdza prawdziwość twierdzenia.

Propozycja 2

Dowód tego twierdzenia może być przygotowany przez jednego z uczniów i zaprezentowany całej klasie na kolejnej lekcji.

Eksperyment "Środek okręgu opisanego w połowie boku trójkąta"

Problem badawczy:

• Czy jeśli środek okręgu opisanego na trójkącie leży w połowie boku, to trójkąt jest prostokątny?

Zapoznanie się ze stanem wiedzy dotyczącym problemu badawczego:

• Uczniowie znają definicję trójkąta, okręgu opisanego na trójkącie. (Zakładamy, że uczniowie znają twierdzenia o okręgu opisanym na trójkącie).

Wybór narzędzi do testowania hipotezy:

• Program GeoGebra.

Konstrukcja:

- Konstruujemy trójkąt.
- Symetralne boków.
- Punkt przecięcia się symetralnych środek okręgu opisanego na trójkącie.

Postawienie hipotezy badawczej:

• Jeśli środek okręgu opisanego na trójkącie leży w połowie boku, to trójkąt jest prostokątny?

Testowanie hipotezy:

• Przesuwamy dowolny wierzchołek trójkąta tak, aby środek okręgu opisanego na trójkącie był w połowie dowolnego boku.

Sformułowanie wyniku:

 Jeśli środek okręgu opisanego na trójkącie leży w połowie boku, to trójkąt jest prostokątny.

Sformułowanie wniosku końcowego:

Propozycja 1

Nauczyciel potwierdza prawdziwość twierdzenia.

Propozycja 2

Dowód tego twierdzenia może być przygotowany przez jednego z uczniów i zaprezentowany całej klasie na kolejnej lekcji.

Wizualizacja nowych pojęć

Wprowadzając nowe pojęcia, staramy się przedstawić model danego zagadnienia. Pomocne może być zastosowanie GeoGebry, np. do wprowadzenia kątów w graniastosłupie czworokątnym.

Takie rozwiązanie zostało zastosowane w e-podręczniku.

Aplet pokazuje kąty zdefiniowane w graniastosłupie.

Wizualizacja kąta między przekątną podstawy a przekątną

Kąt	y w graniastosłupie czworokątnym	
	kąt między przekątną ściany bocznej a krawędzią podstawy	
	kąt nachylenia przekątnej graniastosłupa do płaszczyzny podstawy	
	kąt między przekątnymi sąsiednich ścian bocznych	
		Manual and a second sec

Rozwiązywanie zadań

W internecie można znaleźć dużo filmów z gotowymi rozwiązaniami zadań z matematyki. Wadą uczenia się przez oglądanie filmu jest to, że jeśli jakiś fragment rozwiązania zadania jest dla ucznia niezrozumiały, należy wtedy przerwać film, cofnąć itd. W związku z tym przygotowane aplety z rozwiązaniem zadania krok po kroku są dla ucznia najwłaściwsze. Dają mu możliwość cofnięcia się do wcześniejszych etapów zadania i pozostania w danym miejscu tyle czasu, ile potrzebuje.

Propozycja przygotowania apletu w GeoGebrze z rozwiązaniem zadania krok po kroku (Źródło: <u>Przekroje w prostopadłościanie</u>)

Zadanie 1

Krawędź sześcianu jest równa 6. Oblicz długość przekątnej.

Krok 1

Rysujemy przekątną podstawy i przekątną sześcianu.

Krok 2

Wyznaczamy długość przekątnej podstawy.

Krok 3

Wyznaczamy długość przekątnej sześcianu.

Zadanie 2

W graniastosłupie prawidłowym czworokątnym przekątna podstawy ma długość 6 cm, a przekątna ściany bocznej 10 cm. Obliczymy pole powierzchni całkowitej graniastosłupa.

Matura międzynarodowa

Matura międzynarodowa (International Baccalaureate Diploma Programme) – część międzynarodowego programu edukacyjnego International Baccalaureate. Jest to dwuletni program nauczania na poziomie liceum ogólnokształcącego, realizowany w całości w języku angielskim, francuskim bądź hiszpańskim, zakończony egzaminem maturalnym. Dyplom IB jest prestiżowy i honorowany przez najlepsze uniwersytety na całym świecie.

Matura IB składa się z 6 egzaminów, przy czym 3 lub 4 z nich uczeń zalicza na poziomie rozszerzonym, a 2 lub 3 na poziomie podstawowym. Pierwszy egzamin to język podstawowy (np. język polski). Drugi egzamin także obejmuje język, np. angielski lub niemiecki. W trzeciej grupie przedmiotów na maturze IB znajdują się nauki społeczne, do wyboru m.in. historia, geografia, ekonomia. Czwarta grupa to nauki doświadczalne (chemia, fizyka, biologia i inne), a piąta to nauki matematyczne. Ostatnim przedmiotem jest sztuka (np. malarstwo, film, muzyka), choć ten przedmiot uczeń może zamienić na inny z poprzednich grup.

W wielu krajach Europy kalkulatory stosowane są na każdym etapie edukacyjnym, w szczególności na egzaminach maturalnych. W Polsce na maturze z matematyki uczniowie mogą korzystać tylko z najprostszych kalkulatorów, wyposażonych w podstawowe funkcje obliczeniowe. Nie wolno korzystać z kalkulatorów graficznych. Maturę międzynarodową z matematyki uczeń zdaje z kalkulatorem graficznym.

Przykładowe zadanie z matury międzynarodowej

Przykładowe zadanie

In an arithmetic sequence, $u_5 = 24$, $u_{13} = 80$.

- a) Find the common difference.
- b) Find the first term.
- c) Find the sum of the first 20 terms of the sewuence.

Zadanie dotyczy ciągu arytmetycznego. Należy wyznaczyć różnicę ciągu, pierwszy wyraz oraz policzyć sumę pierwszych wyrazów ciągu.

Matura z matematyki, poziom podstawowy, 2012 r.

Zadanie badające podobną umiejętność. Jednak w Polsce na maturze nie wolno używać kalkulatora.

Zadanie 28

Pierwszy wyraz w ciągu arytmetycznego jest równy 3, czwarty wyraz tego ciągu jest równy 15. Oblicz sumę sześciu początkowych wyrazów tego ciągu.

Przykładowe zadanie z matury międzynarodowej

Write down the value of:

- a) $log_2 8$
- b) $\log_5\left(\frac{1}{25}\right)$
- c) $\log_9 3$

Hence, solve $\log_3 8 + \log_5 \left(\frac{1}{25}\right) + \log_9 3 = \log_{16} x$

Zadanie polega na obliczeniu wartości logarytmu i rozwiązaniu równania. Zauważmy, że w tym zadaniu uczniowie nie mogą użyć kalkulatora.

Matura z matematyki, poziom podstawowy, 2012 r.

Liczba $\log_{\scriptscriptstyle 3} 27 - \log_{\scriptscriptstyle 3} 1$ jest równa

a) 0

- b) 1
- c) 2
- d) 3

Dowiedz się więcej

Akademia GeoGebry przy Centrum Nauczania Matematyki i Fizyki Politechniki Łódzkiej

<u>GeoGebra</u>

Polski kurs GeoGebry dla nauczycieli matematyki i uczniów

Warszawskie Centrum GeoGebry

Zestaw 7

Bibliografia

Brűckner Damian, (2014), Nauczanie matematyki z wykorzystaniem GeoGebry, [w:] *Selected issues and trends of contemporary digital education*, Aptekorz M., Bowdur E. (red.), Katowice: Komputer i Sprawy Szkoły.

Wata M., Żarek D., (2016), <u>Wykorzystanie oprogramowania GeoGebra do wizualizacji</u> <u>w nauczaniu matematyki</u>, w: "Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej" Nr 48 [online, dostęp dn. 15.12.2017, pdf. 815 KB].

Wimmer P., (2011), *GeoGebra - edukacyjna rewolucja*, w: PCWorld, 16.12.2011 [online, dostęp dn. 15.12.2017].

Unia Europejska Europejski Fundusz Społeczny

